Alteration of Ecosystem Nitrogen Dynamics by Exotic Plants: a Case Study of C4 Grasses in Hawaii

نویسندگان

  • MICHELLE C. MACK
  • CARLA M. D’ANTONIO
چکیده

Biological invaders can alter ecosystem processes via multiple pathways, yet few studies have compared the relative importance of these pathways. We assessed the impacts of exotic, invasive grasses on ecosystem nitrogen (N) cycling in the seasonal submontane woodlands of Hawaii Volcanoes National Park, where native grasses have been historically rare. Exotic grasses have become abundant over the past 30 yr and have altered two controls over N cycling: plant species composition and fire regime. Here we synthesize the results of a long-term investigation of species impacts in this system. To determine effects of grasses and fire on internal N cycling, we compared litterfall, decomposition, N mineralization from soil organic matter (SOM), and plant N uptake and production in invaded unburned forest, grass-removal plots within the forest, and woodland converted to grassland by fire. We measured ecosystem N loss via fire by comparing N pools among unburned, naturally burned, and experimentally burned sites. We also assessed the effects of fire on annual N fixation in the unburned forest vs. the grassland. Exotic grasses had relatively small effects on N cycling in the unburned woodland despite being abundant in the understory for 30 yr. Grasses contributed �30% of fine litterfall and primary-production mass and N in the unburned woodland. However, these contributions did not result in significantly increased totals because litterfall and production ofMetrosideros polymorpha, the dominant native tree, was reduced in the invaded woodland relative to grass-removal plots, presumably due to competition with grasses. Although areaweighted decomposition was lower in the grass-removal treatment than in the control, net N mineralization from litter and SOM were similar between these treatments. Annual plant N uptake was similar to annual net N mineralization from SOM in both treatments. By contrast, the burned grassland exhibited much lower rates of litterfall and production mass and N, but higher rates of net N mineralization from SOM than the woodland. As a result, total annual plant N uptake was only 17% of annual net mineralization. This change was primarily due to the loss of native species. Aboveground N pools were significantly reduced with fire. Native species were largely eliminated by fire. However, across all burned and unburned sites there was no change in total ecosystem N because the N contained in biomass was relatively small compared to N in litter and soil. Soil contained �95% of ecosystem N in all sites. Only in the high-intensity experimental burn was there significant loss of N from the soil pool. Fire reduced N inputs through asymbiotic N fixation mainly due to the loss of M. polymorpha, whose litter is an important site of asymbiotic N fixation, and alteration of the soil O-layer. This reduction in N inputs makes it unlikely that fixation activity will replace N lost via combustion before the next fire. Fire and the ensuing loss of native species led to decreased N inputs, increased rates of N mineralization from litter and SOM, and dramatically reduced plant N uptake, potentially leading to a more leaky N cycle. It appears that the indirect effects of grasses on N cycling via the elimination of native species by fire is the most important pathway though which exotic grasses alter ecosystem N dynamics in this system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Studying Short-Time Dynamics of Vegetation and Soil Organic Carbon in a Semi-arid Rangeland (Case Study: Zharf, Khorasan Province, Iran)

Abstract. Rangeland vegetation dynamics encompass all processes of changes in vegetation composition and structure over time. Investigating the rangeland ecosystem dynamics makes it possible to determine the effects of climatic and management conditions on qualitative and quantitative changes of the vegetation in a specific period of time. Accordingly, data collection and measurements for evalu...

متن کامل

Interactive Effects of Nitrogen Deposition and Grazing on Plant Species Composition in a Serpentine Grassland

The interaction of resource availability and disturbance can strongly affect plant species richness and the spread of exotic plants. Several ecological theories posit that disturbance mediates the richness-reducing effects of increased competition as resource levels rise. In the low-nutrient serpentine grasslands of the San Francisco Bay Area, the fertilizing effects of atmospheric nitrogen (N)...

متن کامل

Climate, phylogeny and the ecological distribution of C4 grasses.

'C4 photosynthesis' refers to a suite of traits that increase photosynthesis in high light and high temperature environments. Most C4 plants are grasses, which dominate tropical and subtropical grasslands and savannas but are conspicuously absent from cold growing season climates. Physiological attributes of C4 photosynthesis have been invoked to explain C4 grass biogeography; however, the path...

متن کامل

Thermotolerance capacities of native and exotic coastal plants will lead to changes in species composition under increased heat waves

With an increase in the frequency and intensity of extreme heat events, plants are likely to reach their thermal limits and show slower growth or increased mortality. We investigated differences amongst coastal native and invasive shrubs and grasses to investigate if particular species might be more at risk in the future. Using an ecologically relevant experimental set of heat waves over a mont...

متن کامل

Plant functional composition influences rates of soil carbon and nitrogen accumulation

1. The mechanisms controlling soil carbon (C) and nitrogen (N) accumulation are crucial for explaining why soils are major terrestrial C sinks. Such mechanisms have been mainly addressed by imposing short-term, step-changes in CO 2 , temperature and N fertilization rates on either monocultures or low-diversity plant assemblages. No studies have addressed the long-term effects of plant functiona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010